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Abstract—We consider the problem of distributed detection of
a radioactive source using a network of emission count sensors.
Sensor nodes observe their environment and a central fusion node
attempts to detect a change in the joint probability distribution
due to the appearance of a hazardous source at an unknown time
and location. We consider a minimax-type distributed change-
point detection problem that minimizes detection delay for a de-
sired false alarm rate. A statistical model of the radiation source
detection problem is formulated where sensors observations are
correlated with non-identical distributions. We first derive a
centralized detection algorithm that is asymptotically optimal
for vanishing false alarm rate. Then we analyze the performance
loss, as measured by the detection latency, when sensor counts
are quantized at each sensor node. The detection latency of the
centralized rule provides a lower bound on performance for the
proposed distributed method. The empirical results indicate that
the distributed detection strategy provides a reasonable tradeoff
between latency and information bandwidth.

I. INTRODUCTION

Detection of radioactive sources is a key component in the

prevention of illicit transport and use of hazardous radioactive

material. The detection and identification of radioactive point

sources, particularly from a network of sensors, has received

greater attention in the last decade. Legacy systems consist of

a single large sensor node, such as a Radiation Portal Monitor,

that is best operated at controlled access points and typically

requires a specific operational protocol such as driving the

source through a portal. More recent designs employ a network

of smaller, less expensive sensor nodes that can monitor larger

areas. Each type of system has its merits and limitations.

In this work, we consider distributed detection of a ra-

dioactive source from a network of sensors. Each sensor node

measures an emission count over a sampling time interval,

performs local processing, and transmits either raw count

measurements or a processed local count statistic to a fusion

center. Radioactive source detection systems typically rely

on sensor nodes that report radioactive emission counts over

time intervals on the order of seconds [1], [2]. The fusion

center combines sensor node information to make a detection

decision. The decision is to declare the null hypothesis in

which no radiation source is present and the sensor counts

represent a background emission level, versus the alternate

hypothesis in which a radiation source is present.

In this paper, we consider an architecture in which each

sensor node makes a local binary decision based on current

observations only, binary decisions are transmitted to a fu-

sion center, and the fusion center executes a change-point

rule. Additionally, local sensors need only transmit positive

decisions, in effect censoring their transmissions so as to

reduce network bandwidth requirements. We consider a time-

evolutionary model in which at some unknown time γ a source

appears, and the goal is to detect the presence of the source

with minimal expected detection delay subject to a false alarm

constraint.

Prior works on radiation detection have also considered

detection methods where local binary decisions are made at

each sensor node followed by a global decision rule at a

central node. The present work differs from these works in

two distinct ways. In prior works, the local decision rules

are either batch [3] or sequential [2], [4], [5], and the global

decision rule is a batch-type rule. In these problem formula-

tions, the time when the radiation source appears is assumed

to correspond to the first sample if the source is present.

This type of formulation is well-matched to some operational

protocols; an example case might be at a controlled check-

point where vehicles are stopped and scanned. In contrast, we

consider the case where the radiation source appears at an

unknown point in time during continuous operation. Instead

of batch or sequential tests, we apply quickest change-point

tests at the fusion center. Specifically, we consider sensors

making periodic observations, whose statistical distribution

undergoes a change as a result of a point source appearing

with unknown location and intensity. The objective is to detect

the appearance of the point source as quickly as possible,

subject to a constraint on the false alarm rate. In the literature,

minimax and Bayesian rules are derived for single sensor

source cases depending on whether the change is modeled

as deterministic or random. Here we consider a network of

geographically distributed sensors linked to a fusion center

through band limited links and model the change point as

unknown deterministic and the source parameters random with

known prior distribution. Distributed quickest change detection

methods [6] consider the case where information bandwidth

between sensors and the fusion center is limited. A potential

strategy for reducing bandwidth is to quantize observations at

each sensor and communicate quantized values to the fusion

center. Alternatively, sensors can perform localized change

detection tests and communicate their local decisions to the

fusion center. Optimal test procedures for these cases were
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derived under the assumption that under each hypothesis the

observations are independent. In our model of our radia-

tion source detection problem sensor readings are correlated

through the source location and intensity and therefore these

results are not directly applicable. Recently, Qian, et al. [7]

considered quickest change-point detection using a sensor

network. They consider non-parametric CUSUM tests at each

sensor node without an explicit statistical model of the source

and propose a batch-type global decision rule at the central

node. The proposed centralized and distributed tests are eval-

uated empirically through simulations.

In this paper, we use an explicit statistical model in which

a radioactive source is characterized by an unknown feature

vector characterizing its location and source strength, so

sensor measurements are correlated with one another under

the alternate hypothesis. When the post-change distribution is

unknown and modeled as member of parametric family, one

can follow a generalized likelihood ratio based approach [8]

or a marginal likelihood ratio approach [9]. Here we consider

the case of identical quantization rules at each sensor node and

use a multi-sensor extension of the quickest detection rule with

nuisance variables derived in [9] consistent with the correlated-

observations model.

We provide a statistical model of the radiation source

detection problem using sensors with correlated measurements

with non-identical statistics and provide a centralized detection

algorithm that is asymptotically optimal for vanishing false

alarm rate. Then we analyze the performance loss, as measured

by the detection latency, when sensor counts are quantized

at each sensor node. The detection latency of the centralized

rule provides a lower bound on detection latency for the

proposed distributed method. Our empirical results show that

while the achieved latency of the decentralized algorithm

with binary quantization at the sensors is worse than the

centralized scheme, except asymptotically small false alarm

rates, it provides a reasonable tradeoff between latency and

information bandwidth.

While the paper considers radioactive source detection as

a motivating application, it is worth noting that the results of

this paper apply to hypothesis testing in which the observations

are count statistics whose count distributions are governed by

Poisson distributions under the null and alternate hypotheses.

As mentioned previously, the sensor node measurements are

correlated under the alternate hypothesis case.

The remainder of this paper is outlined as follows. In

Section II, we outline the sensor network model and derive

a centralized quickest change-point decision rule. In Section

III, we derive a distributed decision rule that reduces the

communications overhead compared to the centralized rule.

In Section IV, we present a numerical example validating

analytic results. The example also demonstrates the increase

in detection latency of the distributed rule compared to the

centralized one. Finally, conclusions are given in Section V.

II. CENTRALIZED DECISION RULE

A. Problem Formulation

We consider a network of M sensor nodes, with index i
denoting the ith such node. Each node measures an emis-

sion count over an observation time period; we denote by

xi,1, xi,2, . . . , xi,n the (random) time sequence of observed

counts at the ith sensor node.

For radiation source detection, we consider a binary change

detection problem in which one wishes to determine whether

a radioactive source has become present or not. The emission

counts are random variables whose probability mass distri-

bution changes at some unknown point in time γ, called

a change point; note that γ an integer. We assume the

change point occurs simultaneously at all sensor nodes, thus

neglecting signal propagation delays. For nuclear radiation,

the observation period, which is on the order of seconds [1],

[2], is much longer than particle travel times, which are on

the order of microseconds for a kilometer baseline, so the

assumption of simultaneous change point times is reasonable

for this detection application.

Prior to the change point, the emission counts xi,n for

n < γ are mutually independent across the sensor network

with probability mass function p0i at node i and where the

0 superscript denotes the null hypothesis H0. Note that the

null hypothesis PMFs need not be identical. At time n = γ,

we assume a source becomes present in the scene and is

parameterized by an unknown parameter vector θ; for example,

θ = (α, ρ, φ) might characterize is count strength α and

polar location (ρ, φ), although other parameterizations may

also exist. After the change point, the counts xi,n for n ≥ γ
are conditionally mutually independent with probability mass

function pθi when conditioned on the unknown source param-

eters θ. In other words, observation xi,γ at node i is the first

observation governed by the conditional PMF pθi . The source

parameter vector θ is assumed to by random with known prior

Fθ. We note that, in contrast to [2] where all n observations

are drawn from just one of two hypotheses, here a change

in distribution can occur anywhere within the n-length time

observation sequence.

In this paper, we assume that both the pre-change and post-

change emission counts are Poisson distributed with intensities

λ0
i = bi, i = 1, 2, . . . ,M, (1)

under the pre-change case and

λθ
i = ai(θ) + bi, i = 1, 2, . . . ,M, (2)

under the post-change case. The source intensity is modeled

by ai(θ) = α(di + 1)−2, where di is the Euclidean distance

between the ith node and the source.1

1In [2], the emission counts at a sensor node due to the source have intensity
a/d2. The denominator is modified here from d2 to (d + 1)2 to avoid an
unbounded intensity as the source-to-sensor distance approaches zero.
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B. Quickest Change Detection

The quickest change detection problem can be formulated

as follows. We consider a sequential detection problem in

which at each point n, a decision rule processes the sequence

of measurements xi,k for 1 ≤ i ≤ M and 1 ≤ k ≤ n,

and either declares that no change has occurred or declares

that a change has occurred, and therefore that a radioactive

source has become present at some point in time up to n. Let

N denote the ‘stopping time’, which is the time at which a

sequential decision rule declares that a change in distribution

has occurred. The stopping time is random because it is a

function of the sequence of emission counts. It is considered

a false alarm if the rule declares a change point but no change

in distribution actually occurred.

The design goal adopted here is to detect a change in

distribution with the least amount of delay and for a given

false alarm constraint. The probability of false alarm cannot

be modeled analytically because γ or its distribution are

unknown. Thus, in a non-Bayesian setting, when no prior

is assumed on the change point γ, the constraint is on the

false alarm rate, which is typically defined by the average

time between false alarms. Specifically, the user selects the

minimum average time between false detections, denoted by

A, and the false alarm constraint is defined as E0 (N) ≥ A. A

minimax-type criterion on the detection delay (i.e., stopping

time) was proposed in [10] and is defined by

DD(N) = sup
n≥1

En (N − n|N ≥ n) . (3)

The problem is then to find the decision rule that minimizes

the detection delay DD(N) such that E0 (N) ≥ A.

C. Centralized Quickest Change Detection

We first consider the centralized case, in which there is M =
1 sensor node. We further assume that the the pre-change and

post-change distributions—p0 and pθ respectively—are within

the class of exponential distributions. Under this assumption,

it was shown in [9] that the composite rule given by

N = inf







n : max
1≤k≤n

∫

Θ

n
∏

j=k

pθ(x1,j)

p0(x1,j)
dFθ ≥ A







, (4)

is asymptotically optimal under the false alarm constraint if

the following holds:

DDθ(N) ∼ | logA|
D (pθ||p0) as A → ∞. (5)

provided D(pθ||p0) > 0 for every θ in the support of Fθ. Here,

the notation g(x) ∼ h(x) as x → x0 is used to denote that

g(x) = h(x)(1 + o(1)). Also, the notation DDθ means that

the expectation in equation (3) is replaced by a conditional

expectation with conditioning on the particular θ. The value

D(pθ||p0) in equation (5) is the relative entropy between

distributions pθ and p0.

We note that for the current problem formulation,

both the pre-change and post-change conditional distribu-

tions are exponential distributions of the form fλ(x) =

h(x) exp{η(λ)T (x)−A(η)} with h(x) = 1/x!, η(λ) = log λ,

A(η) = eη(λ), and T (x) = x.

We extend the single-node decision rule (4) to the multi-

node case with heterogeneous Poisson statistics when condi-

tioned on the source parameters. The single-node distributions

are replaced by the multi-node joint distributions, and the

likelihood ratio, conditioned on the source parameters, at time

j becomes

pθ(x1,j , x2,j , . . . , xM,j)

p0(x1,j , x2,j , . . . , xM,j)
=

M
∏

i=1

pθi (xi,j)

p0i (xi,j)
.

The decision rule (4) is expressed in [9] as a function of

the accumulation of the observations. Similarly, if we define

the cumulative counts as si,n =
∑n

j=1 xi,j with si,0 = 0. The

centralized decision rule is then given by

Nc =

inf

{

n : max
1≤k≤n

∫

Θ

M
∏

i=1

fn−k
i (si,n − si,k−1; θ)dFθ ≥ A

}

(6)

where

fm
i (x; θ) = exp

(

x log

(

λθ
i

λ0
i

)

− (m+ 1)
(

λθ
i − λ0

i

)

)

.

Unfortunately, this rule does not appear to have a recursive

form. As a result, (6) requires the storage of the entire

history of the cumulative counts si,1, si,2, . . . , si,n for each

sensor node in the network. Furthermore, the computational

complexity increases proportionally with n; the rule is more

cumbersome to compute with each new observation. Sliding

window rules are proposed in [11] to constrain the memory

and computation burdens and are shown to demonstrate com-

parable performance. In our simulations we have used a sliding

window rule to limit the computational complexity.

Being conditionally independent and Poisson distributed

across the network, the relative entropy between the emission

count distributions is

D
(

pθ||p0
)

=

M
∑

i=1

λθ
i log

(

λθ
i

λ0
i

)

−
(

λθ
i − λ0

i

)

, (7)

given the source parameter θ. Equations (7) and (5) provide

a simple metric for evaluating the detection latency of the

centralized decision rule for feasible sources.

III. DISTRIBUTED DECISION RULE

The centralized detection rule considers the case where

Poisson counts are periodically reported to the fusion center

without quantization at regular intervals. This could be a non-

viable method when the communication bandwidth allocated

to the sensor network is constrained. Under this scenario, the

sensor nodes can employ two potential strategies to reduce

the information bandwidth of their messages. In a distributed

decision structure sensors can run local tests to detect the

change point and communicate their detections to the fusion

center sporadically. It is very hard to derive optimal distributed
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decision strategies for this setup with no feedback from the

fusion center due to the non-classical information structure

of the problem [6], where each decision maker is operating

with different information history or filtration structure. In

addition, for practical scenarios when the links are unreliable,

this decision structure could be very brittle as the loss of

one local detection message can result in unacceptable false-

negatives.

Alternatively, sensors can quantize their counts and commu-

nicate a quantization index to the fusion center periodically.

This strategy is inherently more robust to message losses

as messages indicating high count quantization level will be

repeatedly transmitted after the appearance of the source. This

could be considered as a special case of the decision rule

in (6) with the sensor observation statistics replaced by sensor

message statistics. In this paper, we consider this strategy and

investigate the choice of quantization thresholds to optimize

system level performance. Here we choose binary quantizers

where counts are directly thresholded with a local threshold

τ , resulting in sensor messages that are binomially distributed

conditioned on sensor parameter vector θ.

For the mean-shift Poisson model described in Section II, it

is straightforward to show the likelihood ratios are monotone

non-decreasing as a function of an emission count. Thus,

binary quantization via simple thresholding of the likelihood

ratio of a measured count is equivalent to thresholding a

measured count directly. Each sensor node then transmits a

binary value corresponding to a measured emission count with

conditional probability q0i (τ) = Pr (xi,j > τ), under the pre-

change case and qθi (τ) = Pr (xi,j > τ ; θ), under the post-

change case. We simplify the notation to q0i = q0i (τ) and

qθi = qθi (τ) with the understanding that the probabilities de-

pend on threshold τ . These probabilities are points, determined

by τ , on the complementary cumulative distribution function

of Poisson variables with intensities λ0
i and λθ

i , respectively.

The distributed decision rule is a function of the accumulation

of binary values. Define ui,j as the quantized value of the

emission count xi,j , and sdi,n =
∑n

j=1 ui,j with sdi,0 = 0. The

distributed change-point rule is then given by

Nd =

inf

{

n : max
1≤k≤n

∫

Θ

M
∏

i=1

gn−k
i (sdi,n − sdi,k−1; θ)dFθ ≥ A

}

(8)

where

gmi (x; θ) = exp

(

x log

(

qθi
q0i

)

− (m+ 1− x) log

(

1− qθi
1− q0i

))

.

To evaluate the detection latency, the relative entropy in

equation (5) is replaced by the relative entropy between

the Bernoulli distributions of the quantized counts, which is

simply

D
(

pθ||p0
)

=

M
∑

i=1

qθi log

(

qθi
q0i

)

+
(

1− qθi
)

log

(

1− qθi
1− q0i

)

.

(9)
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Fig. 1. Sensor locations are marked by blue squares and possible source
locations are marked by red dots. Sensors are uniformly spaced on the

circumference of a circle with radius r0 =
√
2 units.

Using equations (5), (7), and (9), comparisons of the detec-

tion latency for low false alarm rates can be made between

the centralized and decentralized detectors. The detection

latency of both the centralized and distributed decision rules

are dependent on the signal-to-noise ratio and the decision

threshold A. While a larger threshold A results in a lower

false alarm rate, the average detection latency increases. As

one would expect and as seen through the relative entropies,

decreasing signal-to-noise ratios surely increases on average

the detection latency. While not shown here explicitly, an

application of Jensen’s inequality would show that the relative

entropy of the distributed method is no greater than that of the

centralized method. As a result, we would expect the average

detection latency of the centralized detector to be a lower

bound to that of the distributed detector. Unlike the centralized

case, the detection latency of the distributed decision rule also

depends on the quantization threshold τ .

IV. NUMERICAL SIMULATION

We present a simulation example to evaluate the efficacy

of the distributed change point rule given in (8), where

sensor counts are quantized to binary statistics, for detecting

the presence of a radiation source and compare it to the

performance of the centralized rule given in (6). The radiation

source is parameterized by a vector θ = (α, ρ, φ) where (ρ, φ)
denotes polar location and α denotes source intensity. We

model the source location as uniformly distributed within a

circular region R centered at (0, 0) and with radius r0 =
√
2

units. The source intensity is modeled as uniformly distributed

in an interval [a1, a2].
We consider a sensor network with M = 3 nodes, located

on the circumference of R at at polar angles 0, 2π/3, and

4π/3 (see Figure 1). We assume that the ambient radiation

count levels under the null hypothesis are Poisson with levels

given by b1 = b2 = b3 = 10 emission units as in equation (1).

We note that even if these ambient levels are unknown, they

can be recursively estimated with the estimation error made

negligible under practical scenarios. When a source is present,

the sensors measure a radiation count whose Poisson levels

increase by ai(θ) = α(di + 1)−2 as in equation (2).

In the simulations that follow, we compute empirical aver-

ages by locating the radiation source at a discrete set of loca-
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tions as shown in Figure 1, with 7 polar angle discretizations in

[0, π/3] and 17 radial distance discretizations in [0,
√
2]. Due

to the symmetry of the problem, this configuration is equiva-

lent to covering the entire region R. The source intensities are

uniformly distributed in the interval [10, 20] emission units for

equivalent signal-to-noise ratios (SNRs) in the range of 0 dB–

6 dB. Figure 1 plots the locations of the sensor nodes (blue

squares) and feasible source locations (red dots).

The hypotheses are simulated through Monte-Carlo trials

with change point γ = ∞ (H0) and γ = 1 (H1), respectively.

Each trial runs until the decision rule declares a detection. We

consider expected time between false alarms of A = 10 to

A = 106. Under H0, each trial run may be quite long because

it is desired to have E0 (N) ≥ A. Thus, we limit the largest

value of A to be 100 for the H0 trials in order to compute

sample statistics in a reasonable amount of time.

Figure 2 shows the empirical false alarm rates of the

centralized and distributed detectors versus A, for 103 Monte-

Carlo trials. The empirical false alarm rates are computed as

the inverse of the sample average of stopping times Nc and

Nd for the centralized and distributed detectors, respectively.

The false alarm rates for the distributed detector are evaluated

for quantization thresholds τ = 10, τ = 12, and τ = 14.

As seen in the figure, the false alarm rates of the distributed

method are very comparable with that of the centralized one.

The empirical rates also appear inversely proportional to A as

desired. Curiously, the false alarm rates of both detectors are

nearly an order of magnitude less than the desired maximum.

Figure 3 shows the empirical average detection latency

versus the decision threshold A and for the three different

quantization thresholds τ . Also shown is the latency lower

bound as computed empirically from trials using the central-

ized detector. It can be seen that, even for a small number

of M = 3 sensors, modest loss of detection delay is realized

across a wide range of false alarm rates. Figure 4 shows how

latency changes as a function of the quantization threshold

for several user-selected false alarm rates (as governed by

threshold A). For this configuration of the sensor network and

source distribution, the threshold τ = 12 results in the lowest

detection latency for the distributed detector. These results are

obtained by averaging across the range of θ realizations for

location and amplitude from 104 Monte-Carlo trials.

To understand the asymptotic optimality, for vanishing false

alarm rates, of the change-point detectors we consider three

extreme cases, one for each corner of the wedge (see in

Figure 1) of feasible source locations. We conjecture that

detection delay for other cases will fall somewhere between

these extremes. First, Figure 5 shows latency performance for

a source located at (ρ, φ) = (
√
2, 0) (that is, co-located with

one of the sensors) and intensity α = 10. Both asymptotic

analytic latency performance (dashed curves) and empirical

detection latency (solid curves) from 104 Monte-Carlo trials

are shown, for both the centralized detection algorithm and its

distributed counterpart. We see very good agreement between

analytical and empirical latency across a range of thresholds.

The slope of empirical detection delay very nearly matches
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Fig. 2. Empirical false alarm rate from 103 Monte-Carlo trials versus the
decision threshold A for the centralized and distributed methods.
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Fig. 3. Empirical average detection latency from 104 Monte-Carlo trials
versus the decision threshold A for the centralized and distributed methods.
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Fig. 4. Empirical average detection latency from 104 Monte-Carlo trials
versus the quantization threshold τ for the distributed method.

the desired asymptotic slope to within a small value that does

not appear to depend on A.

Figures 6 and 7 show latency performance for a source

located at (ρ, φ) = (0, 0) (that is, maximally far from all three

sensors) and (ρ, φ) = (
√
2, π/3). The intensities are α = 10

and α = 20, respectively. Here again we see good agreement

between asymptotic analytic predictions and empirical results.

In each case, the centralized detection rule outperforms the

distributed system with quantized counts with roughly 50%

reduction in the detection latency. However, when information
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parameters θ = (10,
√
2, 0).

Decision Threshold

10
2

10
3

10
4

10
5

10
6

D
et

ec
ti

o
n

 L
at

en
cy

0

10

20

30

40

50

60

70

80
central: analytic

central: empirical

τ=10: analytic

τ=10: empirical

τ=12: analytic

τ=12: empirical

τ=14: analytic

τ=14: empirical

Fig. 6. Average latency versus the decision threshold A for a source with
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Fig. 7. Average latency versus the decision threshold A for a source with

parameters θ = (20,
√
2, π/3).

bandwidth is constrained by the communications network, the

centralized detector may not be practical.

V. CONCLUSIONS

We have considered the problem of detecting the onset of

a radiation source from a network of sensor nodes, when

the onset time is unknown. We adopted a quickest change

detection formulation, in which the design goal is to minimize

the delay between the onset time and the average detection

time, subject to a false alarm rate constraint. The problem

formulation differs from earlier ones in that the onset time

is unknown, and the sensor node measurements under the

source-present hypothesis are no longer independent due to the

correlated nature of count rates that result from correlated dis-

tances to the radiation source. The structure of the distributed

decision rule is one in which each sensor node performs a local

detection test and transmits only positive detections at each

time slot; by transmitting only positive detections, nodes in

effect self-censor, and network bandwidth is efficiently used.

We presented numerical examples and showed both modest

performance loss with respect to a fully centralized detector

and good agreement with asymptotic performance analyses

over a range of source parameter values. While the results of

the paper have focused on detection of radiation sources, the

detection architecture applies to other applications in which

Poisson count statistics are collected by a network of sensors.

Here, we considered a simple line search to search for the

binary quantization threshold. This direct optimization method

will be intractable for the case of multi-level quantizers. One

potential strategy is to use a proxy, such as maximizing

the minimum Kullback–Leibler divergence as taken over the

support of the source parameters.
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